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Kan Extensions of Functors
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Every concept in category theory can be expressed as a Kan extension!



Backprop as Functor:
A compositional perspective on supervised
learning

Brendan Fong David Spivak

Department of Mathematics,
Massachusetts Institute of Technology

Abstract—A supervised learning algorithm searches over a
set of functions A — B parametrised by a space P to find the
best approximation to some ideal function f: A — B. It does
this by taking examples (a, f(a)) € A X B, and updating the
parameter according to some rule. We define a category where
these update rules may be composed, and show that gradient
descent—with respect to a fixed step size and an error
function satisfying a certain property—defines a monoidal
functor from a category of parametrised functions to this
category of update rules. A key contribution is the notion
of request function. This provides a structural perspective
on backpropagation, giving a broad generalisation of neural
networks and linking it with structures from bidirectional
programming and open games.

Rémy Tuyéras

Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology

Consider a supervised learning algorithm. The goal
of a supervised learning algorithm is to find a suitable
approximation to a function f: A — B. To do so,
the supervisor provides a list of pairs (a,b) € A X B,
each of which is supposed to approximate the values
taken by f, i.e. b = f(a). The supervisor also defines
a space of functions over which the learning algorithm
will search. This is formalised by choosing a set P and
a function I: P X A — B. We denote the function at
parameter p € P as I(p,—): A — B. Then, given a pair
(a,b) € A X B, the learning algorithm takes a current
hypothetical approximation of f, say given by I(p, —),
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Monoidal Categories

 Equipped with a product internal bifunctor:
¢« . CXC—-C

e |dentityelement1: 1 @ c~c~c® 1

* Unitinterval [0,1]: closed symmetric monoidal preorder

« 7/ —enriched monoidal category: a,b € C = C(a,b) € 7/
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Figure 10: A learner in the symmetric monoidal category Learn 1s defined as a morphism. Later in Section we will
see how to define learners as coalgebras instead.

Definition 3. Fong et al.|[2019] The symmetric monoidal category Learn is defined as a collection of objects that
define sets, and a collection of an equivalence class of learners. Each learner is defined by the following 4-tuple (see

Figure([10).

* A parameter space I

e

* An implementation function/ : P x A — B
* Anupdate functionU : P x A x B — P

e Arequest functionr : P X AX B — A
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Sequential Composition

Parallel Composition



A (P,I,U,r) (Q,J,V,s)

s B >

The composite learner A — C'is defined as (P x Q,I-J, U -V, r - s), where the composite implementation function is

(I ' J)(p, q a’) = '](qwl(p a))

and the composite update function is

U-V(p,q,a,c):=(U(p a,s(q,I(p,a),c)),V(g,1(p,a),c)

and the composite request function 1s

(71 ' S)(p, q, a, C) — 7’(1), a, S(Qa I(p, a)a C))
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Natural Transformations for Deep Learning
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Published as a conference paper at ICLR 2020

ARE TRANSFORMERS UNIVERSAL APPROXIMATORS
OF SEQUENCE-TO-SEQUENCE FUNCTIONS? Permutation-equivariant

functions

Chulhee Yun™ Srinadh Bhojanapalli AnKkit Singh Rawat
MIT Google Research NY Google Research NY
chulheey(@mit.edu bsrinadh@google.com ankitsrawat@google.com
Sashank J. Reddi Sanjiv Kumar
Google Research NY Google Research NY
sashankl@google.com sanjivk@google.com
f g
X > Y > 4
ABSTRACT

Despite the widespread adoption of Transformer models for NLP tasks, the ex-
pressive power of these models i1s not well-understood. In this paper, we establish P P I &
that Transformer models are universal approximators of continuous permutation
equivariant sequence-to-sequence functions with compact support, which is quite

surprising given the amount of shared parameters in these models. Furthermore, v v v
using positional encodings, we circumvent the restriction of permutation equiv- X P N YP 3 Z P
ariance, and show that Transformer models can universally approximate arbitrary f g

continuous sequence-to-sequence functions on a compact domain. Interestingly,
our proof techniques clearly highlight the different roles of the self-attention and
the feed-forward layers in Transformers. In particular, we prove that fixed width
self-attention layers can compute contextual mappings of the input sequences,
playing a key role in the universal approximation property of Transformers. Based
on this insight from our analysis, we consider other simpler alternatives to self-
attention layers and empirically evaluate them.
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Atn(X) = X+ WHW{X-o[WiX)TWHX]
1=1
FF(X) = Attn(X)+ Wy -ReLU(W; - Attn(X) + bi17

Definition 32. The category Cp of Transformer models is defined as follows:

» The objects Obj(C) are defined as vectors X € R4*™ denoting n-length sequences of tokens of dimension d.

* The arrows or morphisms of the category Cr are defined as a family of sequence-to-sequence functions and
defined as:

Thmr = [ f : R 5 RY™ | where f(X P) = X P, for some permutation matrix P}



GAIA: Generative Al Architecture

Higher-order category theory for
Deep Learning!




Simplicial Objects: One stop ML shopping center
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From Categories to
Homotopy Theory

Simplicial %
Objects In
Algebraic

Topology

J. Peter May




Simplicial Category A

e Objects: ordinal numbers
e [n]=1{0,1,....n—1}

e Arrows: 2

» f:[m] — [n] 1

C 1 < . then f() < fU)) 0 0

e All morphisms can be built out of primitive injections/surjections
e 0;:[n] = [n+ 1] : injection skipping i

» 0;:|n] = [n — 1], surjection repeating 1



Simplicial Sets: Contravariant Functors
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Nerve of a Category

Recall a category is defined as a collection of objects, and a collection of
arrows between any pair of objects

A simplicial set is a contravariant functor mapping the simplicial category
to the category of sets

Any category can be mapped onto a simplicial set by constructing its
nerve

Intuitively, consider all sequences of composable morphisms of length n!



Nerve of the Category of Transformers

e Since Transformers define a category over Euclidean spaces of
permutation-equivariant functions, we can construct its nerve

* Consider all compositions of Transformers building blocks of length n
* This construction maps the category of Transformers into a simplicial set
e |t is a full and faithful embedding of Transformers as simplicial sets

 However, simplicial sets cannot be faithfully mapped back to ordinary
categories



Simplicial Sets vs. Categories

Any category can be embedded faithfully into a simplicial set using its
nerve

The embedding is full and faithful (perfect reconstruction)
Unfortunately, the converse is not possible

Given a simplicial set, the left adjoint functor that maps it into a category
IS lossy!

GAIA (in theory!) is more powerful than existing generative Al formalisms



GAIA: Categorical Foundations of Generative Al
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GAIA: CATEGORICAL FOUNDATIONS OF GENERATIVE AI*

A PREPRINT

Paper online at my
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ABSTRACT

In this paper, we explore the categorical foundations of generative Al. Specifically, we investigate
a Generative Al Architecture (GAIA) that lies beyond backpropagation, the longstanding algorith-
F h . b k' mic workhorse of deep learning. Backpropagation is at its core a compositional framework for
Ort COm I ng OO . (un)supervised learning: it can be conceptualized as a sequence of modules, where each module
updates its parameters based on information it receives from downstream modules, and in turn, trans-
mits information back to upstream modules to guide their updates. GAIA 1s based on a fundamentally
different hierarchical model. Modules in GAIA are organized into a simplicial complex. Each
n-simplicial complex acts like a manager of a business unit: it receives updates from its superiors and
transmits information back to its n + 1 subsimplicial complexes that are its subordinates. To ensure
this simplicial generative Al organization behaves coherently, GAIA builds on the mathematics of
the higher-order category theory of simplicial sets and objects. Computations in GAIA, from query
answering to foundation model building, are posed in terms of lifting diagrams over simplicial objects.
The problem of machine learning in GAIA 1s modeled as “horn" extensions of simplicial sets: each
sub-simplicial complex tries to update its parameters in such a way that a lifting diagram 1s solved.
Traditional approaches used in generative Al using backpropagation can be used to solve “inner" horn
extension problems, but addressing “outer horn" extensions requires a more elaborate framework.

At the top level, GAIA uses the simplicial category of ordinal numbers with objects defined as
(n],n > 0 and arrows defined as weakly order-preserving mappings f : [n] — [m], where f(i) <
f(7),7 < j. This top-level structure can be viewed as a combinatorial “factory" for constructing,
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Coalgebra: X —> F(X) Algebra: F(X) —> X




From Induction to Coinduction

Machine learning has traditionally been modeled as induction
Identification in the limit: Gold, Solomonoff

PAC Learning: Valiant, Vapnik

Algorithmic Information Theory: Chaitin, Koilmogorov

Occam’s Razor, Minimum Description Length



Coinduction: A New Paradigm for ML

 Generative Al is all about modeling infinite data streams
 Automata, Grammars, Markov processes, LLMs, diffusion models

* Infinite data streams define non-well-founded sets

* Final coalgebras generalize (greatest) fixed points

 Reinforcement learning is an example of coinduction in a coalgebra

 Causal inference is also usefully modeled in coalgebras
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Fundamental Study

Behavioural differential equations: a coinductive
Jan Rutten calculus of streams, automata, and power series™

J.J.M.M. Rutten
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Abstract

We present a theory of streams (infinite sequences), automata and languages, and formal power
Febr uary 2019 series, in terms of the notions of homomorphism and bisimulation, which are the cornerstones

261 pages of the theory of (universal) coalgebra. This coalgebraic perspective leads to a unified theory, in
which the observation that each of the aforementioned sets carries a so-called fina/ automaton
ISBN 978-90-6196-568-8 structure, plays a central role. Finality forms the basis for both definitions and proofs by coin-
duction, the coalgebraic counterpart of induction. Coinductive definitions take the shape of what
Publisher: CWI, Amsterdam, we have called behavioural differential equations, after Brzozowski’s notion of input derivative.
A calculus 1s developed for coinductive reasoning about all of the afore mentioned structures,

The Netherlands closely resembling calculus from classical analysis.

(© 2002 Elsevier B.V. All rights reserved.




Conductive Inference

Based on non-well-founded sets
Uses the category-theoretic framework of universal coalgebras
Coinduction generalizes (greatest) fixed point analysis

Reinforcement learning: metric coinduction in stochastic coalgebras
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Computer Science
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. Introduction
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Universal coalgebra: a theory of systems
J.J.M.M. Rutten

CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands Towa 'ds
Communicated by M.W. Mislove
Mathematics
Abstrac of States and

In the semantics of programming, finite data types such as finite lists, have traditionally been »
modelled by initial algebras. Later final coalgebras were used in order to deal with infinite data Obse 'va’lon
types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as mod-
els for certain types of automata and more generally, for (transition and dynamical) systems.
An important property of initial algebras is that they satisfy the familiar principle of induc-
tion. Such a principle was missing for coalgebras until the work of Aczel (Non-Well-Founded Bart Joc Ob$
sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stan-
ford, 1988) on a theory of non-wellfounded sets, in which he introduced a proof principle
nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally
stemming from the world of concurrent programming languages. Using the notion of coalge-
bra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally
dual to that of congruence on algebras. Thus, the three basic notions of universal algebra:
algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, ho-
momorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
as the basic ingredients of a theory called wuniversal coalgebra. Some standard results from
universal algebra are reformulated (using the aforementioned correspondence) and proved for
a large class of coalgebras, leading to a series of results on, e.g., the lattices of subcoalge-
bras and bisimulations, simple coalgebras and coinduction, and a covariety theorem for coalge-
bras similar to Birkhoff’s variety theorem. (¢) 2000 Elsevier Science B.V. All rights reserved.

MSC: 68Q10; 68Q55
PACS: D3; E:1; B3

Keywords: Coalgebra; Algebra; Dynamical system; Transition system; Bisimulation;
Universal coalgebra; Universal algebra; Congruence; Homomorphism; Induction; Coinduction;
Variety; Covariety

E-mail address: janr@cwi.nl (J.J.M.M. Rutten).

0304-3975/00/$ - see front matter (¢) 2000 Elsevier Science B.V. All rights reserved.
PII: S0304-3975(00)00056-6
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Probabilistic systems coalgebraically: A survey
Ana Sokolova*
Department of Computer Sciences, University of Salzburg, Austria
ARTICLE 1INFO ABSTRACT
Keywords: We survey the work on both discrete and continuous-space probabilistic systems as

Probabilistic systems
Coalgebra

Markov chains
Markov processes

coalgebras, starting with how probabilistic systems are modeled as coalgebras and
followed by a discussion of their bisimilarity and behavioral equivalence, mentioning
results that follow from the coalgebraic treatment of probabilistic systems. It is interesting
to note that, for different reasons, for both discrete and continuous probabilistic systems it
may be more convenient to work with behavioral equivalence than with bisimilarity.

© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Probabilistic systems are models of systems that involve quantitative information about uncertainty. They have been
extensively studied in the past two decades in the area of probabilistic verification and concurrency theory. The models
originate in the rich theory of Markov chains and Markov processes (see e.g. [49]) and in the early work on probabilistic
automata [63,61].

Discrete probabilistic systems, see e.g. [49,77,30,55,62,67,33,22,70] for an overview, are transition systems on discrete
state spaces and come in different flavors: fully probabilistic (Markov chains), labeled (with reactive or generative labels), or
combining non-determinism and probability. Probabilities in discrete probabilistic systems appear as labels on transitions
between states. For example, in a Markov chain a transition from one state to another is taken with a given probability.

Continuous probabilistic systems, see e.g. [7,23,26,11,21,45] as well as the recent books [59,27,28] that contain most of
the research on continuous probabilistic systems, are transition systems modeling probabilistic behavior on continuous state
spaces. The basic model is that of a Markov process. Central to continuous probabilistic systems is the notion of a probability
measure on a measurable space. Therefore, the state space of a continuous probabilistic system is equipped with a o-algebra
and forms a measurable space. It is no longer the case that the probability of moving from one state to another determines
the behavior of the system. Actually, the probability of reaching any single state from a given state may be zero while the
probability of reaching a subset of states is nonzero. A Markov process is specified by the probability of moving from any
source state to any measurable subset in the o-algebra, which is intuitively interpreted as the probability of moving from
the source state to some state in the subset.

Both discrete and continuous probabilistic systems can be modeled as coalgebras and coalgebra theory has proved a
useful and fruitful means to deal with probabilistic systems. In this paper, we give an overview of how to model probabilistic
systems as coalgebras and survey coalgebraic results on discrete and continuous probabilistic systems. Having modeled
probabilistic systems as coalgebras, there are two types of results where coalgebra meets probabilistic systems: (1) particular
problems for probabilistic systems have been solved using coalgebraic techniques, and (2) probabilistic systems appear
as popular examples on which generic coalgebraic results are instantiated. The results of the second kind are not to be
considered of less importance: sometimes they lead to completely new results not known in the community of probabilistic
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Coalgy F name for X — FX/reference
MC D Markov chains

DLTS € 411 deterministic automata
LTS PAX )= PA non-deterministic automata, LTSs

React (D &1 reactive systems [55,30]
Gen DAx )+1 generative systems [30]
Str D+Ax )+1 stratified systems [30]
Alt D+PAX ) alternating systems [33]
Var DAxX )+ PAX ) Vardi systems [77]
SSeg PA X D) simple Segala systems [67,66]
Seg PDA X ) Segala systems [67,66]
Bun DPA X ) bundle systems [22]
PZ PDP(A X ) Pnueli-Zuck systems [62]
MG PDPA X ) most general systems

Fig. 1. Discrete probabilistic system types.

RL algorithms can be explored for these stochastic coalgebras!




Final Coalgebras

 In a category of coalgebras, where each object is X -> F(X), a final
coalgebra is an isomorphism X ~ F(X)

* Final coalgebra theorem (Aczel, Mendler): for a wide class of
endofunctors, final coalgebras exist (weak pullbacks)

 RL is essentially coinduction in a coalgebra

VT = R™ + yP*V™ = TXV)



MDP Coalgebras

Any MDP is defined as a tuple M = (S,A,R,P)
Given any action a, it induces a distribution on next states
Any fixed policy defines an induced Markov chain

Markov chains are coalgebras of the distribution functor D

. ayzSeM@(S)



Long-Term Values in
Markov Decision Processes, (Co)Algebraically

Frank M. V. Feys!, Helle Hvid Hansen!, and Lawrence S. Moss?

! Department of Engineering Systems and Services, TPM, Delft University of

Technology, Delft, The Netherlands {f.m.v.feys, h.h.hansen}@tudelft.nl ThiS paper can be
> Department of Mathematics, Indiana University, Bloomington IN, 47405 USA

lsm@cs.indiana. edu GXtended to the RL
setting

Abstract. This paper studies Markov decision processes (MDPs) from
the categorical perspective of coalgebra and algebra. Probabilistic systems,
similar to MDPs but without rewards, have been extensively studied,
also coalgebraically, from the perspective of program semantics. In this
paper, we focus on the role of MDPs as models in optimal planning,
where the reward structure is central. The main contributions of this
paper are (i) to give a coinductive explanation of policy improvement
using a new proof principle, based on Banach’s Fixpoint Theorem, that
we call contraction coinduction, and (ii) to show that the long-term value
function of a policy with respect to discounted sums can be obtained
via a generalized notion of corecursive algebra, which is designed to take
boundedness into account. We also explore boundedness features of the
Kantorovich lifting of the distribution monad to metric spaces.

Keywords: Markov decision process - long-term value - discounted sum
- coalgebra - algebra - corecursive algebra - fixpoint - metric space.



Non-well-founded sets

Non-well-founded sets violate the ZFC+ axioms of set theory

In particular, the axiom of well-foundedness states that there cannot
be any infinite membership chains

Many sets in computer science are not well-founded
Infinite data structures: lists, trees, recursion, stacks
Many Al problems involve non-well-founded sets

« Common knowledge, causality with feedback, natural language



The Powerset Functor

 One of the simplest and most general coalgebras is from the
powerset functor

e X —> Pow(X)

X can be any (well-founded, non-well-founded) set



Labeled Transition Systems as Coalgebras

 Any automata (deterministic or stochastic) is a coalgebra

o Set of states S

» Transition relation - C S XA X §

» Here, s —“ tis the same as (s,a,1) € —
 Coalgebra of LTS defined by powerset functor L

e a¢: S = L(S),s = {(a,s)|s =5}



Homomorphisms of Coalgebras

Oty Ay

F(X) ) F(Y)

MDP homomorphisms are a special case of this framework



RL as Metric Coinduction

APPLICATIONS OF METRIC COINDUCTION

DEXTER KOZEN AND NICHOLAS RUOZZI

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
e-mail address: kozen@cs.cornell.edu

Computer Science Department, Yale University, New Haven, CT 06520-8285, USA
e-mail address: Nicholas.RuozziQyale.edu

ABSTRACT. Metric coinduction is a form of coinduction that can be used to establish
properties of objects constructed as a limit of finite approximations. One can prove a
coinduction step showing that some property is preserved by one step of the approximation
process, then automatically infer by the coinduction principle that the property holds of the
limit object. This can often be used to avoid complicated analytic arguments involving
limits and convergence, replacing them with simpler algebraic arguments. This paper
examines the application of this principle in a variety of areas, including infinite streams,
Markov chains, Markov decision processes, and non-well-founded sets. These results point
to the usefulness of coinduction as a general proof technique.

1. INTRODUCTION

Mathematical induction is firmly entrenched as a fundamental and ubiquitous proof
principle for proving properties of inductively defined objects. Mathematics and computer
science abound with such objects, and mathematical induction is certainly one of the most
important tools, if not the most important, at our disposal.

Perhaps less well entrenched is the notion of coinduction. Despite recent interest,
coinduction is still not fully established in our collective mathematical consciousness. A
contributing factor is that coinduction is often presented in a relatively restricted form.
Coinduction is often considered synonymous with bisimulation and is used to establish
equality or other relations on infinite data objects such as streams [20] or recursive types
[11].

Ju o(u Vu o(u) = o(H(u
p(u*

Contraction mapping convergence in MDPs

IS a special case of metric coinduction



Induction vs Coinduction

* Given the class of all (hon)well-founded sets
« X —> F(X) is the powerset coalgebra
e F(X) —> X is the powerset algebra
 The Initial object in the category of algebras is well-founded sets

 The final object in the category of coalgebras is non-well-founded
sets



Final Coalgebras

A final object In a category is defined as one for which there is a
unique morphism into it from any other object

In the category of coalgebras, the final object is called a final
coalgebra

Example: in the coalgebra of finite state automata, the final coalgebra
Is the smallest automaton accepting a language

Example: in the coalgebra of MDPs, the final coalgebra is the
smallest MDP that defines the optimal value function



Lambek’s Lemma

Definition 83. An F'-coalgebra (A, «) is a fixed point for I, written as A ~ F'(A) if « is an isomorphism between A
and F'(A). That is, not only does there exist an arrow A — F'(A) by virtue of the coalgebra «, but there also exists its

inverse o~ : F'(A) — A such that

aoa " =idpa) and " oa =idy

The following lemma was shown by Lambek, and implies that the transition structure of a final coalgebra 1s an
1Isomorphism.

Theorem 23. Lambek: A final /'-coalgebra 1s a fixed point of the endofunctor F'.
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A general final coalgebra theorem
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By the Final Coalgebra Theorem of Aczel and Mendler, every endofunctor of the category
of sets has a final coalgebra, which, however, may be a proper class. We generalise this to all
‘well-behaved’ categories 7. The role of the category of classes 1s played by a free
cocompletion . of % under transfinite colimits, that 1s, colimits of ordinal-indexed
chains. Every endofunctor F of % has a canonical extension to an endofunctor F* of &~
which 1s proved to have a final coalgebra (and an 1nitial algebra). Based on this, we prove a
general solution theorem: for every endofunctor of a locally presentable category % all
guarded equation-morphisms have unique solutions. The last result does not need the
extension .# “: the solutions are always found within the category .7 .



Occam's Razor Coalgebraically

 We can now define a coalgebraic version of Occam's Razor
 Given any category of coalgebras, where there is a final coalgebra

 Any other coalgebra must define a unigue morphism into the final
coalgebra

 [f this unique morphism is injective (or a monomorphism), the given
coalgebra must be minimal

« States of the final coalgebra define behaviors" (see Jacobs book)



Bisimulation for Imitation Games
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Imitation game using Bisimulations
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Summary

Coalgebras provide a fundamental framework for modeling
generative Al

Each coalgebra is defined by a functor F: X —> F(X)
Coinduction is the principle of finding a final coalgebra

Reinforcement learning is the problem of finding final coalgebras In
the category of MDP coalgebras



